Performance improvements
for Cloud Internet Services

Varun Rao & Disaiah Bennett

Manager: Nikhil Gupta - Team: 7 - Austin, Texas

Cloud Internet
Services

Our team’s API delivered
security, reliability, and
high performance services
from Cloudflare to IBM’s
clients using IBM cloud.

IBM Cloud

1BM Cloud

Getting started

Overview

Metrics

Security

Reliability

Performance

Plan

Catalog Docs Support Manage

Resource Group: Default Location: Global

Step1ofs

Welcome to IBM Cloud Internet Services

8y connecting your application’s domain name (Ex. cloud.ibm.com) to Cloud Internet Servic
begin experiencing improved response speeds and reduced bandwidth costs. Your application s protected by
industry-leading security functions like our Web Application Firewall.

In just a few steps, your application will be running better than ever.

Service Mode

Service modes are temporary global modifiers used to
protect your domain i it is under attack (Defense
mode) or to disable functionality for testing purposes
(Pause service). Itis easy to return to normal
operations when ready.

Selectamode +

Performance

rhrome
CHlUNNC

n o a

Varun Rao's Account

Let’s talk

FEEDBACK

What problem were we solving?

e \We use Kubernetes and Armada to deploy our service.

e \Ve needed to deliver our services at scale, and our API| needed to be able to
handle hundreds of requests per second.

e Our old solution was slow, so we had to improve the performance of our team’s
service.

IBM Cloud

So what did we do?

e The biggest bottleneck in any internet service will always
be communication between servers.

e \We designed and developed a Python module for making
HTTP requests with libcurl instead of the most commonly

used open source Requests library or the built in Python
standard library.

So how much faster is our version?

IBM Cloud

So why iIs ours faster?

IBM Cloud

TCP connection reuse

e \When you go to any new website or server, a new TCP connection and is
opened between your computer and that server, which requires a new TLS

handshake to be performed.
e Opening this connection can take a couple seconds, easily longer than the

entire data transfer. Sender Recever

0Oms

dL

SYN ACK } ;

sw9g

S1L

2 ServerHello
(lientHello 84ms ChangeCipherSpec [¢
Finished

ChangeCipherSpec
Finished
Application Data |"*™ [Application Data

wweef 168 s

sw9g

IBM Cloud

Tracking closed TCP connections

e Our original request solution also didn’t track closed TCP connections.
e Every so often the OS closes a TCP connection, and if we keep trying to make requests using it, we will just fail.
e We managed to fix this by using curl to make requests.

Initiator Receiver

ESTABLISHED
connection

active close : Egg:e%;g%"m

" CLOSE_WAIT

passive close

‘/"AQ(’//
FIN_WAIT 2 ‘///EE/ LAST_ACK

ACK
\ CLOSED

TIME_WAIT

CLOSED

IBM Cloud

PyCurl vs Requests

e Instead of relying on Python standard libraries, we made HTTP requests using
libcurl, which is written in C, which is way faster than Python.

Loopback: Python Client CPU Time Used vs. Request Size (HTTP only)

20 &
«
b
3
2 15 X
o 5
2
a
= %
T
o ek *—* * — i
[s] .]
S 10
-
w
2
e
[
S -
~
]
& o,

\&».,;_
; ® e o oo o o ——e
J
100000 10000 1000 100 10

Response Size (B)

IBM Cloud

*- Requests Time (
No cNxn reuse)
pyCurl Time (no
cnXn reuse)

—@— Requests Time (
cnxn reuse)

@ pyCurl Time (
cnxn reuse)

Requests Per Second

Requests Per Second

2400 4— HTTP Requests (no cnxn
’/,.7—0 e * reuse)
/ 4~ HTTP PyCurl (no cnxn reuse)
1800 /, ¢ oo — a4 HTTP Requests (cnxn reuse)
-
/ » J— 3.l == 4~ HTTP PyCurl (cnxn Reuse)
/ /,0’* o —— HTTPS Requests (no cnxn
/ &
1200 g/ reuise)
%/ 2 (S B = —4 —* HTTPS PyCurl (no cnxn reuse)

14) = -

o~ 4+ HTTPS Requests (cnxn reuse)

(P

y 4 —* HTTPSPyCurl (cnxn Reuse)

600 —— e ——————
A
/"““
o +—t—t—¢t—¢t—¢— S
g 33333 v
100000 10000 1000 100 10

Response Size (B)

Baseline Our version

%] %)
+ +
7] 7]
[<V] Q
ber | >
o o
]]
o< o

800-1200 800-1200

Time (ms) Time (ms)

No connection reuse, no TCP connection tracking, and Connection reuse, TCP connection tracking, and using
using Requests library. libcurl.

IBM Cloud

Old baseline Median Baseline

) STATISTICS Expand all groups | Collapse all groups
) Executions ®© Response Time (ms)

Requests « 50th 75th 95th 99th
Reqg/s¢ | Min# pcts pcts Dokt pcts

]
L I k e d a t a ? Global Information 109.195 375 3493 4941 9035 14522 23363 4289
(]

create zone 2.874 2455 10780 14526 21857 23363 11878

Max# | Mean#

create dns records 28.736 3553 5046 14844 17851 4674

e Our slowest request were
8.621 3300 8412 10292 3687

no faster than the old
slowest requests. We rely
on a lot of external APls,
so this slowdown could be
caused by any number of
issues.

Our median request time

list records

change d...de to on 2.874 3824 10719
update r...ds by id 28.736 3442 11260
change d...e to off 2.874 3909 10448
purge all caches 2.874 3197 8710

delete r...ds by id 28.736 3218 12270

O ofofojojojojo o

New Median

delete zone 2.874 5144 14274

is more than twice as fast ~ Our version 1587
as the old median, but we) STATISTICS Expand all groups | Collapse all = _ups

didn’t see twice the) Executions ® Response Time (ms)

improvement due to the Sequssis ¢ e % 50th | 75th | 95th _|.Tatn

s KO# KO+ Reqg/s+# Min#$ pcts | pets |pele pcts Max#$ | Mean#$

slowest requests still

being Very SlOW. Global Information 19000

(=]

0% | 168.142 212 1587 2063 5725 24686 48450 2546

create zone 500 0% 4.425 3137 18129 26844 38267 45172 20228

create dns records 5000 0% 44.248 737 1974 8937 19260 3033
list records 1500 0% 13.274 665 1458 4806 5437 1883
change d...de to on 500 0% 4.425 945 1746 2398
update r...ds by id 0% 44.248 1753 2092
change d...e to off 0% 4.425 1434 1575
purge all caches (73 4.425 1161 1227

delete r...ds by id 0% 44.248 1077 1301

IBM Cloud delete zone

oO/lojojojojojojo o

0% 4.425 1359 1424

Contact

Varun Rao
varunsatishrao@gmail.com

Disaiah Bennett
lavontae.bennett@gmail.com

And thanks to our mentor, Andrei Ta!

IBM Cloud

https://github.com/varunsrao

